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ABSTRACT
High-dimensional regression/classification continues to be
an important and challenging problem, especially when fea-
tures are highly correlated. Feature selection, combined with
additional structure information on the features has been
considered to be promising in promoting regression/classifi-
cation performance. Graph-guided fused lasso (GFlasso)
has recently been proposed to facilitate feature selection and
graph structure exploitation, when features exhibit certain
graph structures. However, the formulation in GFlasso relies
on pairwise sample correlations to perform feature grouping,
which could introduce additional estimation bias. In this
paper, we propose three new feature grouping and selection
methods to resolve this issue. The first method employs a
convex function to penalize the pairwise l∞ norm of con-
nected regression/classification coefficients, achieving simul-
taneous feature grouping and selection. The second method
improves the first one by utilizing a non-convex function to
reduce the estimation bias. The third one is the extension
of the second method using a truncated l1 regularization to
further reduce the estimation bias. The proposed methods
combine feature grouping and feature selection to enhance
estimation accuracy. We employ the alternating direction
method of multipliers (ADMM) and difference of convex
functions (DC) programming to solve the proposed formu-
lations. Our experimental results on synthetic data and two
real datasets demonstrate the effectiveness of the proposed
methods.
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1. INTRODUCTION
High-dimensional regression/classification is challenging

due to the curse of dimensionality. Lasso [18] and its var-
ious extensions, which can simultaneously perform feature
selection and regression/classification, have received increas-
ing attention in this situation. However, in the presence
of highly correlated features lasso tends to only select one
of those features resulting in suboptimal performance [27].
Several methods have been proposed to address this issue
in the literature. Shen and Ye [15] introduce an adaptive
model selection procedure that corrects the estimation bias
through a data-driven penalty based on generalized degrees
of freedom. The Elastic Net [27] uses an additional l2 reg-
ularizer to encourage highly correlated features to stay to-
gether. However, these methods do not incorporate prior
knowledge into the regression/classification process, which
is critical in many applications. As an example, many bi-
ological studies have suggested that genes tend to work in
groups according to their biological functions, and there are
some regulatory relationships between genes [10]. This bio-
logical knowledge can be represented as a graph, where the
nodes represent the genes, and the edges imply the regu-
latory relationships between genes. Therefore, we want to
study how estimation accuracy can be improved using de-
pendency information encoded as a graph.

Given feature grouping information, the group lasso [1, 7,
22, 11] yields a solution with grouped sparsity using l1/l2
penalty. The orignal group lasso does not consider the over-
laps between groups. Zhao et al. [24] extend the group lasso
to the case of overlapping groups. Jacob et al. [7] intro-
duce a new penalty function leading to a grouped sparse
solution with overlapping groups. Yuan et al. [21] propose
an efficient method to solve the overlapping group lasso.
Other extensions of group lasso with tree structured regu-
larization include [11, 8]. Prior works have demonstrated
the benefit of using feature grouping information for high-
dimensional regression/classification. However, these meth-
ods need the feature groups to be pre-specified. In other
words, they only utilize the grouping information to obtain
solutions with grouped sparsity, but lack the capability of
identifying groups.

There are also a number of existing methods for feature
grouping. Fused lasso [19] introduces an l1 regularization



method for estimating subgroups in a certain serial order,
but pre-ordering features is required before using fused lasso.
A study about parameter estimation of the fused lasso can be
found in [12]; Shen et al. [13] propose a non-convex method
to select all possible homogenous subgroups, but it fails to
obtain sparse solutions. OSCAR [2] employs an l1 regular-
izer and a pairwise l∞ regularizer to perform feature selec-
tion and automatic feature grouping. Li and Li [10] suggest
a grouping penalty using a Laplacian matrix to force the co-
efficients to be similar, which can be considered as a graph
version of the Elastic Net. When the Laplacian matrix is
an identity matrix, Laplacian lasso [10, 5] is identical to the
Elastic Net. GFlasso employs an l1 regularization over a
graph, which penalizes the difference |βi − sign(rij)βj |, to
encourage the coefficients βi, βj for features i, j connected
by an edge in the graph to be similar when rij > 0, but
dissimilar when rij < 0, where rij is the sample correlation
between two features [9]. Although these grouping penalties
can improve the performance, they would introduce addi-
tional estimation bias due to strict convexity of the penalties
or due to possible graph misspecification. For example, ad-
ditional bias may occur when the signs of coefficients for two
features connected by an edge in the graph are different in
Laplacian lasso [10, 5], or when the sign of rij is inaccurate
in GFlasso [9].
In this paper, we focus on simultaneous estimation of

grouping and sparseness structures over a given undirected
graph. Features tend to be grouped when they are con-
nected by an edge in a graph. When features are connected
by an edge in a graph, the absolute values of the model
coefficients for these two features should be similar or iden-
tical. We propose one convex and two non-convex penalties
to encourage both sparsity and equality of absolute values
of coefficients for connected features. The convex penalty
includes a pairwise l∞ regularizer over a graph. The first
non-convex penalty improves the convex penalty by penal-
izing the difference of absolute values of coefficients for con-
nected features. The other one is the extension of the first
non-convex penalty using a truncated l1 regularization to
further reduce the estimation bias. These penalties are de-
signed to resolve the aforementioned issues of Laplacian lasso
and GFlasso. The non-convex penalties shrink only small
differences in absolute values so that estimation bias can be
reduced; several recent works analyze their theoretical prop-
erties [26, 14]. Through ADMM and DC programming, we
develop computational methods to solve the proposed for-
mulations. The proposed methods can combine the benefit
of feature selection and that of feature grouping to improve
regression/classification performance. Due to the equality of
absolute values of coefficients, the model complexity of the
learned model can be reduced. We have performed experi-
ments on synthetic data and two real datasets. The results
demonstrate the effectiveness of the proposed methods.
The rest of the paper is organized as follows. We intro-

duce the proposed convex method in Section 2, and the two
proposed non-convex methods in Section 3. Experimental
results are given in Section 4. We conclude the paper in
Section 5.

2. A CONVEX FORMULATION
Consider a linear model in which response yi depends on

a vector of p features:

y = Xβ + ε, (1)

where β ∈ Rp is a vector of coefficients, X ∈ Rn×p is the
data matrix, and ε is random noise. Given an undirected
graph, we try to build a prediction model (regression or
classification) incorporating the graph structure information
to estimate the nonzero coefficients of β and to identify the
feature groups when the number of features p is larger than
the sample size n. Let (N,E) be the given undirected graph,
where N = {1, 2, . . . , p} is a set of nodes, and E is the set of
edges. Node i corresponds to feature xi. If nodes i and j are
connected by an edge in E, then features xi and xj tend to
be grouped. The formulation of graph OSCAR (GOSCAR)
is given by

min
β

1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E

max{|βi|, |βj |} (2)

where λ1, λ2 are regularization parameters. We use a pair-
wise l∞ regularizer to encourage the coefficients to be equal [2],
but we only put grouping constraints over the nodes con-
nected over the given graph. The l1 regularizer encourages
sparseness. The pairwise l∞ regularizer puts more penalty
on the larger coefficients. Note that max{|βi|, |βj |} can be
decomposed as

max{|βi|, |βj |} =
1

2
(|βi + βj |+ |βi − βj |).

1
2
(|βi + βj |+ |βi − βj |) can be represented by

|uTβ|+ |vTβ|,

where u,v are sparse vectors, each with only two non-zero
entries ui = uj = 1

2
, vi = −vj = 1

2
. Thus Eq. (2) can be

rewritten in a matrix form as

min
β

1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2∥Tβ∥1, (3)

where T is a sparse matrix constructed from the edge set E.
The proposed formulation is closely related to OSCAR [2].

The penalty of OSCAR is λ1∥β∥1+λ2

∑
i<j max{|βi|, |βj |}.

The l1 regularizer leads to a sparse solution, and the l∞ reg-
ularizer encourages the coefficients to be equal. OSCAR can
be efficiently solved by accelerated gradient methods, whose
key projection can be solved by a simple iterative group
merging algorithm [25]. However, OSCAR assumes each
node is connected to all the other nodes, which is not suffi-
cient for many applications. Note that OSCAR is a special
case of GOSCAR when the graph is complete. GOSCAR,
incorporating an arbitrary undirected graph, is much more
challenging to solve.

2.1 Algorithm
We propose to solve GOSCAR using the alternating di-

rection method of multipliers (ADMM) [3]. ADMM decom-
poses a large global problem into a series of smaller local
subproblems and coordinates the local solutions to identify
the globally optimal solution. ADMM attempts to com-
bine the benefits of dual decomposition and augmented La-
grangian methods for constrained optimization [3]. The
problem solved by ADMM takes the form of

minx,z f(x) + g(z)
s.t. Ax+Bz = c.

ADMM uses a variant of the augmented Lagrangian method
and reformulates the problem as follows:

Lρ(x, z,µ) = f(x)+g(z)+µT (Ax+Bz−c)+ρ

2
∥Ax+Bz−c∥2,



with µ being the augmented Lagrangian multiplier, and ρ
being the non-negative dual update step length. ADMM
solves this problem by iteratively minimizing Lρ(x, z,µ) over
x, z, and µ. The update rule for ADMM is given by

xk+1 := argmin
x

Lρ(x, z
k,µk),

zk+1 := argmin
z

Lρ(x
k+1, z,µk),

µk+1 := µk + ρ(Axk+1 +Bzk+1 − c).

Consider the unconstrained optimization problem in Eq. (3),
which is equivalent to the following constrained optimization
problem:

minβ,q,p
1
2
∥y −Xβ∥2 + λ1∥q∥1 + λ2∥p∥1

s.t. β − q = 0, Tβ − p = 0,
(4)

where q,p are slack variables. Eq. (4) can then be solved
by ADMM. The augmented Lagrangian is

Lρ(β,q,p,µ,υ) =
1
2
∥y −Xβ∥2 + λ1∥q∥1 + λ2∥p∥1

+ µT (β − q) + υT (Tβ − p) + ρ
2
∥β − q∥2 + ρ

2
∥Tβ − p∥2,

where µ,υ are augmented Lagrangian multipliers.
Update β: In the (k + 1)-th iteration, βk+1 can be up-

dated by minimizing Lρ with q,p,µ,υ fixed:

βk+1 = argminβ
1
2
∥y −Xβ∥2 + (µk +TTυk)Tβ

+ ρ
2
∥β − qk∥2 + ρ

2
∥Tβ − pk∥2. (5)

The above optimization problem is quadratic. The optimal
solution is given by βk+1 = F−1bk, where

F = XTX+ ρ(I+TTT),
bk = XTy − µk −TTυk + ρTTpk + ρqk.

The computation of βk+1 involves solving a linear system,
which is the most time-consuming part in the whole algo-
rithm. To compute βk+1 efficiently, we compute the Cholesky
factorization of F at the beginning of the algorithm:

F = RTR.

Note that F is a constant and positive definite matrix. Using
the Cholesky factorization we only need to solve the follow-
ing two linear systems at each iteration:

RT β̂ = bk, Rβ = β̂. (6)

Since R is an upper triangular matrix, solving these two
linear systems is very efficient.
Update q: qk+1 can be obtained by solving

qk+1 = argmin
q

ρ

2
∥q− βk+1∥2 + λ1∥q∥1 − (µk)Tq

which is equivalent to the following problem:

qk+1 = argmin
q

1

2
∥q− βk+1 − 1

ρ
µk∥2 + λ1

ρ
∥q∥1 (7)

Eq. (7) has a closed-form solution, known as soft-thresholding :

qk+1 = Sλ1/ρ(β
k+1 +

1

ρ
µk), (8)

where the soft-thresholding operator is defined as:

Sλ(x) = sign(x)max(|x| − λ, 0).

Update p: Similar to updating q, pk+1 can also be ob-
tained by soft-thresholding :

pk+1
i = Sλ2/ρ(Tβk+1 +

1

ρ
υk). (9)

Update µ,υ:

µk+1 = µk + ρ(βk+1 − qk+1),
υk+1 = υk + ρ(Tβk+1 − pk+1).

(10)

A summary of GOSCAR is shown in Algorithm 1.

Algorithm 1: The GOSCAR algorithm

Input: X,y, E, λ1, λ2, ρ
Output: β
Initialization: p0 ← 0,q0 ← 0,µ0 ← 0,υ0 ← 0;
Compute the Cholesky factorization of F;
do

Compute βk+1 according to Eq. (6).
Compute qk+1 according to Eq. (8).
Compute pk+1 according to Eq. (9).
Compute µk+1,υk+1 according to Eq. (10).

Until Convergence;
return β;

In Algorithm 1, the Cholesky factorization only needs to
be computed once, and each iteration involves solving one
linear system and two soft-thresholding operations. The
time complexity of the soft-thresholding operation in Eq. (8)
is O(p). The other one in Eq. (9) involves a matrix-vector
multiplication. Due to the sparsity of T, its time complex-
ity is O(ne), where ne is the number of edges. Solving the
linear system involves computing bk and solving Eq. (6),
whose total time complexity is O(p(p+ n) + ne). Thus the
time complexity of each iteration is O(p(p+ n) + ne).

3. TWO NON-CONVEX FORMULATIONS
The grouping penalty of GOSCAR overcomes the limita-

tion of Laplacian lasso that the different signs of coefficients
can introduce additional penalty. However, under the l∞
regularizer, even if |βi| and |βj | are close to each other, the
penalty on this pair may still be large due to the property
of the max operator, resulting in the coefficient βi or βj be-
ing over penalized. The additional penalty would result in
biased estimation, especially for large coefficient, as in the
lasso case [18]. Another related grouping penalty is GFlasso,
|βi − sign(rij)βj |, where rij is the pairwise sample correla-
tion. GFlasso relies on the pairwise sample correlation to
decide whether βi and βj are enforced to be close or not.
When the pairwise sample correlation wrongly estimates the
sign between βi and βj , an additional penalty on βi and βj

would occur, introducing estimation bias. This motivates
our non-convex grouping penalty, ||βi| − |βj ||, that shrinks
only small differences in absolutes values. As a result, esti-
mation bias is reduced as compared to these convex grouping
penalties. The proposed non-convex methods perform well
even when the graph is wrongly specified, unlike GFlasso.
Note that the proposed non-convex grouping penalty does
not assume the sign of an edge is given; it only relies on the
graph structure.

3.1 Non-Convex Formulation I: ncFGS
The proposed non-convex formulation (ncFGS) solves the

following optimization problem:

min
β

f(β) =
1

2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E

||βi| − |βj ||,

(11)



where the grouping penalty
∑

(i,j)∈E ||βi| − |βj || controls only
magnitudes of differences of coefficients ignoring their signs
over the graph. Through the l1 regularizer and grouping
penalty, simultaneous feature grouping and selection are per-
formed, where only large coefficients as well as pairwise dif-
ferences are shrunk.
A computational method for the non-convex optimization

in Eq. (11) is through DC programming. We will first give
a brief review of DC programming.
A particular DC program on Rp takes the form of

f(β) = f1(β)− f2(β)

with f1(β) and f2(β) being convex on Rp. Algorithms to
solve DC programming based on the duality and local op-
timality conditions have been introduced in [17]. Due to
their local characteristic and the non-convexity of DC pro-
gramming, these algorithms cannot guarantee the computed
solution to be globally optimal. In general, these DC algo-
rithms converge to a local solution, but some researchers
observed that they converge quite often to a global one [16].
To apply DC programming to our problem we need to

decompose the objective function into the difference of two
convex functions. We propose to use:

f1(β) =
1
2
∥y −Xβ∥2 + λ1∥β∥1 + λ2

∑
(i,j)∈E(|βi + βj |

+ |βi − βj |),
f2(β) = λ2

∑
(i,j)∈E (|βi|+ |βj |).

The above DC decomposition is based on the following iden-
tity: ||βi| −|βj || = |βi + βj |+ |βi − βj | − (|βi|+ |βj |). Note
that both f1(β) and f2(β) are convex functions.
Denote fk

2 (β) = f2(β
k) + ⟨β − βk, ∂f2(β

k)⟩ as the affine
minorization of f2(β), where ⟨·, ·⟩ is the inner product. Then
DC programming solves Eq. (11) by iteratively solving a
sub-problem as follows:

min
β

f1(β)− fk
2 (β). (12)

Since ⟨βk, ∂f2(β
k)⟩ is constant, Eq. (12) can be rewritten

as

min
β

f1(β)− ⟨β, ∂f2(βk)⟩. (13)

Let ck = ∂f2(β
k). Note that

cki = λ2disign(β
k
i )I(βk

i ̸= 0), (14)

where di is the degree of node i, and I(·) is the indicator
function. Hence, the formulation in Eq. (13) is

minβ
1
2
∥y −Xβ∥2 + λ1∥β∥1 − (ck)Tβ

+ λ2

∑
(i,j)∈E (|βi + βj |+ |βi − βj |), (15)

which is convex. Note that the only differences between
the problems in Eq. (2) and Eq. (15) are the linear term
(ck)Tβ and the second regularization parameter. Similar
to GOSCAR, we can solve Eq. (15) using ADMM, which is
equivalent to the following optimization problem:

minβ,q,p
1
2
∥y −Xβ∥2 − (ck)Tβ + λ1∥q∥1 + 2λ2∥p∥1

s.t β − q = 0, Tβ − p = 0.
(16)

There is an additional linear term (ck)Tβ in updating β
compared to Algorithm 1. Hence, we can use Algorithm 1
to solve Eq. (15) with a small change in updating β:

Fβ − bs − ck = 0.

where s represents the iteration number in Algorithm 1.
The key steps of ncFGS are shown in Algorithm 2.

Algorithm 2: The ncFGS algorithm

Input: X,y, E, λ1, λ2, ϵ
Output: β
Initialization: β0 ← 0;

while f(βk)− f(βk+1) > ϵ do
Compute ck according to Eq. (14).
Compute βk+1 using Algorithm 1 with ck and
λ1, 2λ2 as regularization parameters.

end
return β;

3.2 Non-Convex Formulation II: ncTFGS
It is known that the bias of lasso is due to the looseness

of convex relaxation of l0 regularization. The truncated l1
regularizer, a non-convex regularizer close to the l0 regular-
izer, has been proposed to resolve the bias issue [23]. The
truncated l1 regularizer can recover the exact set of nonzero
coefficients under a weaker condition, and has a smaller up-
per error bound than lasso [23]. Therefore, we propose a
truncated grouping penalty to further reduce the estima-
tion bias. The proposed formulation based on the truncated
grouping penalty is

minβ fT (β) =
1
2
∥y −Xβ∥2 + λ1p1(β) + λ2p2(β) (17)

where

p1(β) =
∑

i Jτ (|βi|),
p2(β) =

∑
(i,j)∈E Jτ (||βi| − |βj ||),

and Jτ (x) = min(x
τ
, 1) is the truncated l1 regularizer, a

surrogate of the l0 function; τ is a non-negative tuning pa-
rameter. Figure 1 shows the difference between l0 norm, l1

x

1

y

x

1

y

x

1

y

Figure 1: Example for l0 norm (left), l1 norm (mid-
dle), and Jτ (|x|) with τ = 1

8
(right).

norm and Jτ (|x|). When τ → 0, Jτ (|x|) is equivalent to the
l0 norm given by the number of nonzero entries of a vector.
When τ ≥ |x|, τJτ (|x|) is equivalent to the l1 norm of x.

Note that Jτ (||βi| − |βj ||) can be decomposed as

Jτ (||βi| − |βj ||) = 1
τ
(|βi + βj |+ |βi − βj |)

− 1
τ
max(2|βi| − τ, 2|βj | − τ, |βi|+ |βj |),

and a DC decomposition of Jτ (|βi|) is

Jτ (|βi|) =
1

τ
|βi| −

1

τ
max(|βi| − τ, 0).

Hence, the DC decomposition of fT (β) can be written as

fT (β) = fT,1(β)− fT,2(β),



where

fT,1(β) =
1
2
∥y −Xβ∥2 + λ1

τ
∥β∥1 + λ2

τ

∑
(i,j)∈E(|βi + βj |

+ |βi − βj |),
fT,2(β) =

λ1
τ

∑
i max(|βi| − τ, 0) + λ2

τ

∑
(i,j)∈E max(2|βi|

− τ, 2|βj | − τ, |βi|+ |βj |).

Let ckT = ∂fT,2(β
k) be the subgradient of fT,2 in the (k+1)-

th iteration. We have

ckT,i = sign(βk
i )
(
λ1
τ
I(|βk

i | > τ) + λ2
τ

∑
j:(i,j)∈E

(2I(|βk
j | < |βk

i | − τ) + I(||βk
i | − |βk

j || < τ))
)
.

(18)

Then the subproblem of ncTFGS is

minβ
1
2
∥y −Xβ∥2 + λ1

τ
∥β∥1 − (ckT )

Tβ

+ λ2
τ

∑
(i,j)∈E (|βi + βj |+ |βi − βj |),

(19)

which can be solved using Algorithm 1 as in ncFGS.
The key steps of ncTFGS are summarized in Algorithm 3.

Algorithm 3: The ncTFGS algorithm

Input: X,y, E, λ1, λ2, τ, ϵ
Output: β
Initialization: β0 ← 0;

while f(βk)− f(βk+1) > ϵ do
Compute ckT according to Eq. (18).
Compute βk+1 using Algorithm 1 with ckT and
λ1
τ
, 2λ2

τ
as regularization parameters.

end
return β;

ncTFGS is an extension of ncFGS. When τ ≥ |βi|, ∀i, ncT-
FGS with regularization parameters τλ1 and τλ2 is identical
to ncFGS (see Figure 3). ncFGS and ncTFGS have the same
time complexity. The subproblems of ncFGS and ncTFGS
are solved by Algorithm 1. In our experiments, we observed
ncFGS and ncTFGS usually converge in less than 10 itera-
tions.

4. NUMERICAL RESULTS
We examine the performance of the proposed methods

and compare them against lasso, GFlasso, and OSCAR on
synthetic datasets and two real datasets: FDG-PET images1

and Breast Cancer2. The experiments are performed on a
PC with dual-core Intel 3.0GHz CPU and 4GB memory.
The code is written in MATLAB. The algorithms and their
associated penalties are:

• Lasso: λ1∥β∥1;

• OSCAR: λ1∥β∥1 + λ2

∑
i<j max{|βi|, |βj |};

• GFlasso: λ1∥β∥1 + λ2

∑
(i,j)∈E |βi − sign(rij)βj |;

• GOSCAR: λ1∥β∥1 + λ2

∑
(i,j)∈E max{|βi|, |βj |};

• ncFGS: λ1∥β∥1 + λ2

∑
(i,j)∈E ||βi| − |βj ||;

• ncTFGS: λ1

∑
i Jτ (|βi|) + λ2

∑
(i,j)∈E Jτ (||βi| − |βj ||);

1http://adni.loni.ucla.edu/
2http://cbio.ensmp.fr/∼jvert/publi/

4.1 Efficiency
To evaluate the efficiency of the proposed methods, we

conduct experiments on a synthetic dataset with a sample
size of 100 and dimensions varying from 100 to 3000. The re-
gression model is y = Xβ+ ε, where X ∼ N (0, Ip×p), βi ∼
N (0, 1), and εi ∼ N (0, 0.012). The graph is randomly gen-
erated. The number of edges ne varies from 100 to 3000. The
regularization parameters are set as λ1 = λ2 = 0.8max{|βi|}
with ne fixed. Since the graph size affects the penalty, λ1

and λ2 are scaled by 1
ne

to avoid trivial solutions with di-
mension p fixed. The average computational time based on
30 repetitions is reported in Figure 2. As can be seen in
Figure 2, GOSCAR can achieve 1e-4 precision in less than
10s when the dimension and the number of edges are 1000.
The computational time of ncTFGS is about 7 times higher
than that of GOSCAR in this experiment. The computa-
tional time of ncFGS is the same as that of ncTFGS when
τ = 100, and very close to that of ncTFGS when τ = 0.15.
We can also observe that the proposed methods scale very
well to the number of edges. The computational time of the
proposed method increases less than 4 times when the num-
ber of edges increases from 100 to 3000. It is not surprising
because the time complexity of each iteration in Algorithm 1
is linear with respect to ne, and the sparsity of T makes the
algorithm much more efficient. The increase of dimension is
more costly than that of the number of edges, as the com-
plexity of each iteration is quadratic with respect to p.
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(a) The number of edges is fixed to 1000.
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(b) The dimension is fixed to 500.

Figure 2: Comparison of GOSCAR, ncFGS, ncT-
FGS (τ = 0.15), and ncTFGS (τ = 100) in terms of
computation time with different dimensions, preci-
sions and the numbers of edges (in seconds and in
logarithmic scale).

4.2 Simulations
We use five synthetic problems that have been commonly

used in the sparse learning literature [2, 10] to compare the
performance of different methods. The data is generated



from the regression model y = Xβ+ε, εi ∼ N (0, σ2). The
five problems are given by:

1. n = 100, p = 40, and σ = 2, 5, 10. The true parameter
is given by

β = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

)T .

X ∼ N (0,Sp×p) with sii = 1, ∀i and sij = 0.5 for
i ̸= j.

2. n = 50, p = 40, β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)T , and σ =

2, 5, 10. The features are generated as

xi = Z1 + εxi , Z1 ∼ N (0, 1), i = 1, . . . , 5
xi = Z2 + εxi , Z2 ∼ N (0, 1), i = 6, . . . , 10
xi = Z3 + εxi , Z3 ∼ N (0, 1), i = 11, . . . , 15
xi ∼ N (0, 1) i = 16, . . . , 40

with εxi ∼ N (0, 0.16), and X = [x1, . . . ,x40].

3. Consider a regulatory gene network [10], where an en-
tire network consists of nTF subnetworks, each with
one transcription factor (TF) and its 10 regulatory
target genes. The data for each subnetwork can be
generated as XTF

i ∼ N (0,S11×11) with sii = 1, s1i =
si1 = 0.7, ∀i, i ̸= 1 and sij = 0 for i ̸= j, j ̸= 1, i ̸= 1.
Then X = [XTF

1 , . . . ,XTF
nTF

], n = 100, p = 110, and
σ = 5. The true parameters are

β = (
5√
11

, . . . ,
5√
11︸ ︷︷ ︸

11

,
−3√
11

, . . . ,
−3√
11︸ ︷︷ ︸

11

, 0, . . . , 0︸ ︷︷ ︸
p−22

)T .

4. Same as 3 except that

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

,−3, −3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

10

, 0, . . . , 0︸ ︷︷ ︸
p−22

)T

5. Same as 3 except that

β = (5,
5√
10

, . . . ,
5√
10︸ ︷︷ ︸

10

,−5, −5√
10

, . . . ,
−5√
10︸ ︷︷ ︸

10

,

3,
3√
10

, . . . ,
3√
10︸ ︷︷ ︸

10

,−3, −3√
10

, . . . ,
−3√
10︸ ︷︷ ︸

10

0, . . . , 0︸ ︷︷ ︸
p−44

)T

We assume that the features in the same group are connected
in a graph, and those in different groups are not connected.
We use MSE to measure the performance of estimation of
β, which is defined as

MSE(β) = (β − β∗)TXTX(β − β∗).

For feature grouping and selection, we introduce two sep-
arate metrics to measure the accuracy of feature grouping
and selection. Denote Ii, i = 0, 1, 2, ...,K as the index of
different groups, where I0 is the index of zero coefficients.
Then the metric for feature selection is defined as

s0 =

∑
i∈I0

I(βi = 0) +
∑

i/∈I0
I(βi ̸= 0)

p
,

and the metric for feature grouping is defined as

s =

∑K
i=1 si + s0

K + 1
,

where

si =

∑
i ̸=j,i,j∈Ii

I(|βi| = |βj |) +
∑

i̸=j,i∈Ii,j /∈Ii
I(|βi| ̸= |βj |)

|Ii|(p− 1)
.

si measures the grouping accuracy of group i under the as-
sumption that the absolute values of entries in the same
group should be the same, but different from those in differ-
ent groups. s0 measures the accuracy of feature selection.
It is clear that 0 ≤ s0, si, s ≤ 1.

For each dataset, we generate n samples for training, as
well as n samples for testing. To make the synthetic datasets
more challenging, we first randomly select ⌊n/2⌋ coefficients,
and change their signs, as well as those of the corresponding
features. Denote β̃ and X̃ as the coefficients and features
after changing signs. Then β̃i = −βi, x̃i = −xi, if the i-
th coefficient is selected; otherwise, β̃i = βi, x̃i = xi. So
that X̃β̃ = Xβ. We apply different approaches on X̃. The
covariance matrix of X is used in GFlasso to simulate the
graph misspecification. The results of β converted from β̃
are reported.

Figure 3 shows that ncFGS obtains the same results as
ncTFGS on dataset 1 with σ = 2 when τ is larger than
|βi|. The regularization parameters are τλ1 and τλ2 for
ncTFGS, and λ1 and λ2 for ncFGS. Figure 4 shows the av-
erage nonzero coefficients obtained on dataset 1 with σ = 2.
As can be seen in Figure 4, GOSCAR, ncFGS, and ncTFGS
are able to utilize the graph information, and achieve good
parameter estimation. Although GFlasso can use the graph
information, it performs worse than GOSCAR, ncFGS, and
ncTFGS due to the graph misspecification.
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Figure 3: MSEs (left), s0 (middle), and s (right) of
ncFGS and ncTFGS on dataset 1 for fixed λ1 and
λ2. The regularization parameters for ncTFGS are
τλ1 and τλ2. τ ranges from 0.04 to 4.

The performance in terms of MSEs averaged over 30 sim-
ulations is shown in Table 1. As indicated in Table 1,
among existing methods (Lasso, GFlasso, OSCAR), GFlasso
is the best, except in the two cases where OSCAR is bet-
ter. GOSCAR is better than the best existing method in all
cases except for two, and ncFGS and ncTFGS outperform
all the other methods.

Table 2 shows the results in terms of accuracy of feature
grouping and selection. Since Lasso does not perform fea-
ture grouping, we only report the results of the other five
methods: OSCAR, GFlasso, GOSCAR, ncFGS, and ncT-
FGS. Table 2 shows that ncFGS and ncTFGS achieve higher
accuracy than other methods.

Table 3 shows the comparison of feature selection alone
(λ2 = 0), feature grouping alone (λ1 = 0), and simulta-
neous feature grouping and selection using ncTFGS. From



Table 1: Comparison of performance in terms of MSEs and estimated standard deviations (in parentheses)
for different methods based on 30 simulations on different synthetic datasets.

Datasets Lasso OSCAR GFlasso GOSCAR ncFGS ncTFGS
Data1 (σ = 2) 1.807(0.331) 1.441(0.318) 1.080(0.276) 0.315(0.157) 0.123(0.075) 0.116(0.075)
Data1 (σ = 5) 5.294(0.983) 5.328(1.080) 3.480(1.072) 1.262(0.764) 0.356(0.395) 0.356(0.395)
Data1 (σ = 10) 12.628(3.931) 13.880(4.031) 13.411(4.540) 6.061(4.022) 1.963(1.600) 1.958(1.593)
Data2 (σ = 2) 1.308(0.435) 1.084(0.439 ) 0.623(0.250) 0.291(0.208) 0.226(0.175) 0.223(0.135)
Data2 (σ = 5) 4.907(1.496) 4.868(1.625) 2.538(0.656) 0.781(0.598) 0.721(0.532) 0.705(0.535)
Data2 (σ = 10) 18.175(6.611) 18.353(6.611) 6.930(2.858) 4.601(2.623) 4.232(2.561) 4.196(2.577)
Data3 (σ = 5) 5.163(1.708) 4.503(1.677) 4.236(1.476) 3.336(1.725) 0.349(0.282) 0.348(0.283)
Data4 (σ = 5) 7.664(2.502) 7.167(2.492) 7.516(2.441) 7.527(2.434) 5.097(0.780) 4.943(0.764)
Data5 (σ = 5) 9.893(1.965) 7.907(2.194) 9.622(2.025) 9.810(2.068) 7.684(1.1191) 7.601(1.038)

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

(a)
0 10 20 30 40
0

0.5

1

1.5

2

2.5

(b)
0 10 20 30 40
0

0.5

1

1.5

2

2.5

(c)

0 10 20 30 40
0

0.5

1

1.5

2

2.5

(d)
0 10 20 30 40
0

0.5

1

1.5

2

2.5

(e)
0 10 20 30 40
0

0.5

1

1.5

2

2.5

(f)

Figure 4: The average nonzero coefficients obtained
on dataset 1 with σ = 2: (a) Lasso; (b) GFlasso; (c)
OSCAR; (d) GOSCAR; (e); ncFGS; (f) ncTGS

Table 3, we can observe that simultaneous feature grouping
and selection outperforms either feature grouping or feature
selection, demonstrating the benefit of joint feature grouping
and selection in the proposed non-convex method.

4.3 Real Data
We conduct experiments on two real datasets: FDG-PET

and Breast Cancer. The metrics to measure the performance
of different algorithms include accuracy (acc.), sensitivity
(sen.), specificity (spe.), degrees of freedom (dof.), and the
number of nonzero coefficients (nonzero coeff.). The dof.
of lasso is the number of nonzero coefficients [18]. For the
algorithms capable of feature grouping, we use the same
definition of dof. in [2], which is the number of estimated
groups.

4.3.1 FDG-PET
In this experiment, we use FDG-PET 3D images from

74 Alzheimer’s disease (AD), 172 mild cognitive impair-
ment (MCI), and 81 normal control (NC) subjects down-
loaded from the Alzheimer’s disease neuroimaging initiative
(ADNI) database. The different regions of whole brain vol-
ume can be represented by 116 anatomical volumes of in-
terest (AVOI), defined by Automated Anatomical Labeling
(AAL) [20]. Then we extracted data from each of the 116
AVOIs, and derived average of each AVOI for each subject.
In our study, we compare different methods in distinguish-

Figure 5: Subgraphs of the graph built by SICE on
FDG-PET dataset, which consists of 265 edges.

ing AD and NC subjects, which is a two-class classification
problem over a dataset with 155 samples and 116 features.
The dataset is randomly split into two subset, one training
set consisting of 104 samples, and one testing set consisting
of the remaining 51 samples. The tuning of the parameter
is achieved by 5-fold cross validation. Sparse inverse covari-
ance estimation (SICE) has been recognized as an effective
tool for identifying the structure of the inverse covariance
matrix. We use SICE developed in [6] to model the con-
nectivity of brain regions. Figure 5 shows sample subgraphs
built by SICE consisting of 115 nodes and 265 edges.

The results based on 20 replications are shown in Table 4.
From Table 4, we can see that ncTFGS achieves more ac-
curate classification while obtaining smaller degrees of free-
dom. ncFGS and GOSCAR achieve similar classification,
while ncFGS selects more features than GOSCAR.

Figure 6 shows the comparison of accuracy with either λ1

or λ2 fixed. The λ1 and λ2 values range from 1e-4 to 100.
As we can see, the performance of ncTFGS is slightly better
than that of the other competitors. Since the regularization
parameters of subproblems in ncTFGS are λ1

τ
and 2λ2

τ
, the

solution of ncTFGS is more sparse than those of other com-
petitors when λ1 and λ2 are large and τ is small (τ = 0.15
in this case).

4.3.2 Breast Cancer
We conduct experiments on the breast cancer dataset,

which consists of gene expression data for 8141 genes in 295



Table 2: Accuracy of feature grouping and selection based on 30 simulations for five feature grouping methods:
the first row for each dataset corresponds to the accuracy of feature selection; the second row corresponds
to the accuracy of feature grouping. The numbers in parentheses are the standard deviations.

Datasets OSCAR GFlasso GOSCAR ncFGS ncTFGS

Data1 (σ = 2)
0.675(0.098) 0.553(0.064) 0.513(0.036) 0.983(0.063) 1.000(0.000)
0.708(0.021) 0.709(0.017) 0.702(0.009) 0.994(0.022) 1.000(0.000)

Data1 (σ = 5)
0.565(0.084) 0.502(0.009) 0.585(0.085) 1.000(0.000) 1.000(0.000)
0.691(0.011) 0.709(0.016) 0.708(0.017) 1.000(0.000) 1.000(0.000)

Data1 (σ = 10)
0.532(0.069) 0.568(0.088) 0.577(0.061) 0.983(0.063) 1.000(0.000)
0.675(0.031) 0.725(0.022) 0.708(0.020) 0.994(0.022) 0.999(0.001)

Data2 (σ = 2)
0.739(0.108) 0.544(0.272) 1.000(0.000) 0.958(0.159) 0.958(0.159)
0.625(0.052) 0.823(0.029) 0.837(0.014) 0.831(0.052) 0.846(0.041)

Data2 (σ = 5)
0.763(0.114) 0.717(0.275) 0.999(0.005) 0.979(0.114) 0.975(0.115)
0.650(0.066) 0.741(0.062) 0.833(0.011) 0.845(0.030) 0.842(0.037)

Data2 (σ = 10)
0.726(0.101) 0.818(0.149) 0.993(0.024) 1.000(0.000) 1.000(0.000)
0.597(0.058) 0.680(0.049) 0.829( 0.025) 0.851(0.015) 0.856(0.014)

Data3 (σ = 5)
0.886(0.135) 0.736(0.103) 0.382(0.084) 0.992(0.026) 0.996(0.014)
0.841(0.056) 0.739(0.041) 0.689(0.013) 0.995(0.017) 0.978(0.028)

Data4 (σ = 5)
0.875(0.033) 0.881(0.026) 0.882(0.037) 0.796(0.245) 0.950(0.012)
0.834(0.030) 0.805(0.035) 0.805(0.036) 0.895(0.114) 0.890(0.074)

Data5 (σ = 5)
0.760(0.203) 0.802(0.153) 0.861(0.051) 0.881(0.174) 0.894(0.132)
0.858(0.031) 0.821(0.037) 0.805(0.037) 0.920(0.056) 0.919(0.057)

Table 4: Comparison of classification accuracy, sensitivity, specificity, degrees of freedom, and the number of
nonzero coefficients averaged over 20 replications for different methods on FDG-PET dataset.

Metrics Lasso OSCAR GFlasso GOSCAR ncFGS ncTFGS
acc. 0.886(0.026) 0.891(0.026) 0.901(0.029) 0.909(0.026) 0.909(0.031) 0.920(0.024)
sen. 0.870(0.041) 0.876(0.038) 0.904(0.038) 0.909(0.041) 0.915(0.043) 0.933(0.047)
pec. 0.913(0.0446) 0.917(0.050) 0.902(0.046) 0.915(0.046) 0.908(0.047) 0.915(0.052)
dof. 22.150 29.150 24.350 21.300 31.250 18.250
nonzero coeff. 22.150 38.000 41.900 24.250 37.350 19.350

Table 3: Comparison of feature selection alone (FS),
feature grouping alone (FG), and simultaneous fea-
ture grouping and feature selection (Both). The
average results based on 30 replications of three
datasets with σ = 5: Data3 (top), Data4 (middle),
and Data5 (bottom) are reported. The numbers in
parentheses are the standard deviations.

Meth. MSE s0 s
FG 2.774(0.967) 0.252(0.156) 0.696(0.006)
FS 6.005(1.410) 0.945(0.012) 0.773(0.037)
Both 0.348(0.283) 0.996(0.014) 0.978(0.028)
FG 9.4930(1.810) 0.613(0.115) 0.770(0.038)
FS 6.437(1.803) 0.947(0.016) 0.782(0.046)
Both 4.944(0.764) 0.951(0.166) 0.890(0.074)
FG 10.830(2.161) 0.434(0.043) 0.847(0.014)
FS 10.276(1.438) 0.891(0.018) 0.768(0.026)
Both 7.601(1.038) 0.894(0.132) 0.919(0.057)

breast cancer tumors (78 metastatic and 217 non-metastatic).
The network described in [4] is used as the input graph in
this experiment. Figure 7 shows a subgraph consisting of 80
nodes of the used graph. We restrict our analysis to the 566
genes most correlated to the output, but also connected in
the graph. 2/3 data is randomly chosen as training data, and
the remaining 1/3 data is used as testing data. The tuning
parameter is estimated by 5-fold cross validation. Table 5
shows the results averaged over 30 replications. As indicated
in Table 5, GOSCAR, ncFGS and ncTFGS outperform the
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Figure 6: Comparison of accuracies for various
methods with λ1 fixed (left) and λ2 fixed (right) on
FDT-PET dataset.

other three methods, and ncTFGS achieves the best perfor-
mance.

5. CONCLUSION
In this paper, we consider simultaneous feature group-

ing and selection over a given undirected graph. We pro-
pose one convex and two non-convex penalties to encourage
both sparsity and equality of absolute values of coefficients
for features connected in the graph. We employ ADMM
and DC programming to solve the proposed formulations.
Numerical experiments on synthetic and real data demon-
strate the effectiveness of the proposed methods. Our results
also demonstrate the benefit of simultaneous feature group-
ing and feature selection through the proposed non-convex



Table 5: Comparison of classification accuracy, sensitivity, specificity, degrees of freedom, and the number of
nonzero coefficients averaged over 30 replications for various methods on Breast Cancer dataset.

Metrics Lasso OSCAR GFlasso GOSCAR ncFGS ncTFGS
acc. 0.739(0.054) 0.755(0.055) 0.771(0.050) 0.783(0.042) 0.779(0.041) 0.790(0.036)
sen. 0.707(0.056) 0.720(0.060) 0.749(0.060) 0.755(0.050) 0.755(0.055) 0.762(0.044)
pec. 0.794(0.071) 0.810(0.068) 0.805(0.056) 0.827(0.061) 0.819(0.058) 0.834(0.060)
dof. 239.267 165.633 108.633 70.267 57.233 45.600
nonzero coeff. 239.267 243.867 144.867 140.667 79.833 116.567

Figure 7: A subgraph of the network in Breast Can-
cer dataset [4]. The subgraph consists of 80 nodes.

methods. In this paper, we focus on undirected graphs. A
possible future direction is to extend the formulations to
directed graphs. In addition, we plan to study the general-
ization performance of the proposed formulations.
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